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Abstract— This paper introduces the inverse control design using neural network based self tuning regulator (STR). The control algorithm performs
equally very well to both minimum phase and non-minimum phase of linear plants. The controller is the radial basis function neural network (RBFNN)
and acts as inverse of the plant. The plant parameters are estimated online using the system identification method where uses the Autoregressive with
exogenous input (ARX) model which depends on the input and output values of the plant. The difference between the output of the plant and the
reference signal is used to adjust coefficients of ARX model. These coefficients of ARX are used to update the weights of the RBFNN. The weight update
equations are derived based on the least mean squares principle (LMS). The output tracks the reference trajectory though the self tuning regulator
(STR) structure exposed to different types of disturbances for wide range of operating conditions. Then, the algorithm compared with the self tuning of
proportional-plus-integral feedback (PI) controller. The proposed algorithm is successfully verified using simulations for both minimum and non-minimum
phase of linear plants counter to using PI.

Index Terms— STR, RBFNN, ARX, LMS, Single-phase full-converter drive, flexible transmission

—————————— ——————————
1.  INTRODUCTION

he development of a control system involves many
tasks such as modeling, design of the control law,
implementation and validation. The self-tuning

regulator (STR) attempts to automate several of these tasks.
The Self Tuning Regulator is composed of two loops: the
inner loop which contains the process and an ordinary
feedback controller, the outer loop which is composed by a
recursive parameter estimator and design calculations and
this loop adjusts the controller parameters.
Indirect adaptive algorithm: two steps: (1) estimate process
model parameters; (2) update controller parameters as if
estimates were correct [1]. This is illustrated in fig. (1).

Fig. 1: Block diagram of a self-tuning regulator

Adaptive control schemes are used for the control of plants,
where the parameters of the plant are not known exactly or
slowly time varying. Some reasons for using Adaptive
control such as variations in process dynamics and
variations in the character of the disturbances [1],[2].
Enzeng ,Shuxiang and others [3] present a neural network
based self tuning PID controller for autonomous
underwater vehicle, the control system consists of neural
network identifier and neural network controller, and the
weights of neural networks are trained by using Davidon
least square method, also[4].

Neural  network  (NN)  is  a  good  structure  for  control  the
nonlinear plants and has many types [5],[6]. Kumar and
Ray [7] used neural network for modeling the retention
process and as controller. In this paper, we used the
RBFNN as a controller. This type is faster one and uses least
number of neurons at hidden layer [8],[9]. The inverse
control means that the controller (RBFNN) acts the inverse
of the plant so the output tracks the reference input [10].

The  DC  motors  have  been  extensively  used  in  control
systems. The main advantages of dc motors are easy speed
or position control and wide adjustable range Therefore,
DC motors are often used in a variety of industrial
applications such as robotic manipulator, where a wide
range of motions are required to follow a predetermined
speed or position trajectory under variable load
[11],[12],[13]. K.sabahi [14] used a new adaptive and
nonlinear control based on neural network approaches, this
method has been named feedback error learning (FEL)
approaches, that classical controller is used for training of
neural network feedforward controller.

 Pal and Naskar [15] proposed a simple self-tuning scheme
for PI-type fuzzy logic controllers (FLCs) for a real time
water pressure control system. This scheme is improved
performance of the system even at load change and set
point variations. Kota and Goud [16] used PID controller
and fuzzy logic controller for control separately excited dc
motor. Fuzzy self-tuning PID has better dynamic response
curve, shorter response time, small overshoot, and small
steady state error compared to the conventional PID
controller. Fawaz and others [17] presented a simulation
and hardware implementation of a closed loop control of a
separately excited dc motor using a self-tuning PID
controller. It gives very acceptable results in the reduction
of overshoot, stability time and the steady-state transient
response of the controlled plant. Saad [18] proved that the
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proposed Neural Network (NN) self-tuning PID controller
is more efficient to control the robot manipulator to follow
the desired trajectory compared to classical tuning method
of PID controller. Alfonso and others [19] introduced a new
self-tuning algorithm is developed for determining the
Fourier Series Controller coefficients with the aim of
reducing the torque ripple in a Permanent Magnet
Synchronous Motor (PMSM), thus allowing for a smoother
operation. This algorithm adjusts the controller parameters
based on the component's harmonic distortion in time
domain of the compensation signal.

An application of the multiple models adaptive control
based on switching and tuning to a flexible transmission
system presented by Alireza K. and Dore L [20]. This
approach has been considered in order to assure high
control performance in the presence of large load variation
on the system.

In this paper a new technique is proposed that gives a good
control for the linear plants. An online control algorithm is
structured using the radial basis function neural network
(RBFNN). The plant parameters are estimated on line and
are used to update the weights of the RBFNN. The weight
update equations are derived based on the least mean
squares principle. The RBFNN virtually models the inverse
of the plant and thus the output tracks the reference
trajectory. This scheme is exposed to several types of
disturbances for wide range of operating conditions. The
self tuning regulator (STR) meets the aforementioned
disturbances separately and simultaneously.

2.  PROPOSED STRUCTURE
The proposed structure is shown in Fig. (2), in the estimator
block the Autoregressive with exogenous input (ARX) is
used to model the plant. The estimates are updated online
for any changes in real-time. These estimates are fed to the
weight update block for the RBFNN.

Fig. 2 Proposed self-tuning regulator structure

2.1 ARX Model
The ARX model is by far the most widely applied linear
dynamic model. The popularity of the ARX model comes
from its easy-to-compute parameters. The ARX model can
be obtained by choosing )(qA  and )(qB  arbitrary
polynomial.
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2.2 Radial Basis Functions Neural Networks
A single input single output radial basis function neural
network (SISO RBFNN) is shown in Fig. (3). It consists of an
input node )(tr , a hidden layer with n  neurons and an
output node )(tx . Each of the input node is  connected to
all the nodes in the hidden layer through unity weights
(direct connection). While each of the hidden layer nodes is
connected to the output node through some weights

0
,,1 nww  .

Each neuron finds the distance d  of the input and its
center and passes the resulting scalar through nonlinearity.
So the output of the hidden neuron is given by [8], [21]
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where 0,,2,1 ni ,  is the norm matrix and (.)  is the
nonlinear basis function. Normally this function is taken as
a Gaussian function of width . The output )(tx  is  a
weighted sum of the outputs of the hidden layer, given by
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As we see the radial basis function (RBF) network utilized a
radial construction mechanism. This gives the hidden layer
parameters of RBF networks a better interpretation than for
the multilayer perceptron network MLP, and therefore
allows new, faster training methods.

Fig. 3: A general RBF network
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2.3 Parameters estimation for self-tuning of RBFNN
The training algorithm is based on a recursive scheme (least
mean square) of estimating the parameters of the ARX
model and the weights of the RBFNN. The parameters (the
coefficients  of  the  ARX  model  and  the  weights  of  the
RBFNN) are updated by minimizing the performance index
I given by [9]

)(2
2
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Where )(tr  is  the  reference  input  signal  and )(ty  is  the
output of the plant. The coefficients of the ARX model and
the weights of the RBFNN are updated in the negative
direction of the gradient as,
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Where mn bbaa 11  is the parameter vector,

021 nwwwW   is the weight vector for RBFNN and  is

the learning parameter. The variable K  is used to show the
iteration number of training.

Keeping the regressions of the variables in the system in a
regression vector as

)()()()1()( dmtxdtxntytyt  and finding
partial derivatives.
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The final parameter update equation will be,
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The partial derivatives for the weights are derived as
follows,
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The final weight update equation will be,
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But the final coefficients update equation of PI will be,
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Where ip kkPI  is the vector for parameters

proportional-integral (PI) and st  is the sample time.

3.  SIMULATION RESULTS
The proposed STR structure is tested for both minimum
and non-minimum phase linear plants like as the Single-
phase full-converter drive and the flexible transmission
respectively.

3.1 Single-phase full-converter drive system
The  dc  motor  dynamic  are  given  by  the  following
equations:
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Where maa KJbLRivw ,,,,,,,  and bK  the rotor speed,
terminal voltage, armature current, armature resistance,
armature inductance, damping constant, rotor inertia,
torque constant and back emf constant, respectively. Fig. (4)
describes the block diagram of the DC motor, using the
superposition principle to obtain the output w  with two
inputs ),( da Tv  :
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Fig. 4: The block diagram of the dc motor
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ZOH (zero order hold) is used to convert a continuous-time
dc motor model to a discrete-time one, the output equation
can be written in the form of difference equation.

If the armature circuit of a dc motor is connected to the
output of a single-phase controlled rectifier, the armature
voltage  can  be  varied  by  varying  the  delay  angle  of  the
converter, , as [22]:

0cos2 forVV m
a

The proposed (STR) structure exposed to different
disturbances as dc motor does in life. The dc motor meets to
changing in its parameters due to increased temperature.
This paper studies these variations where the motor model
parameters are estimated online and are used to update the
weights/coefficients of the RBFNN/PI at the same instant.

Fig.(5) shows the efficient response of the RBFNN/PI to the
square input and the error signal between the reference and
the RBFNN/PI output, in the case no disturbance.

The changing of temperature has an impact upon the
parameters of a dc motor as an armature resistance and
rotor inertia. Fig.(6) shows the effect of variance for the
armature resistance at specified period 300t ,  (a)  in
RBFNN case, the resistance has the range 8.142 R . The
output system takes the same trajectory until the armature
resistance became 14.9 . But, (b) PI case, the resistance
has the range 152 R . The output system mimics the
trajectory exactly until the armature resistance became
15 . But the error between the response of the system and
the reference signal is not smaller than radial basis
regulator.

Fig.(7) shows the effect of variance for the rotor inertia at
specified period 300t ; (a)  the parameters evolution turn
into large values when the rotor inertia increases, so  the
inertia has the range 08.002.0 J  when RBNN used.  (b)
The  speed  of  the  dc  drive follows the excitation signal
when used PI; however, the ARX model parameters value
fluctuate sharply and this is not good.

In the life, we must take account of the disturbance torque.
Fig.(8) illustrate the efficient output while this disturbance
reach to maximum value 5.1Td mN. with radial basis
self tuning. Likewise, PI self tuning have over this
disturbance until reach to maximum value 7.1Td mN.
at specified period 400300 t .

The previous mentioned disturbances are applied
synchronized. fig.9.a, at case 1 when 10R ,

05.0J 2.mKg  at 300t  and 1Td mN.  at 310220 t ;
and  case  2,  when 10R , 05.0J 2.mKg  at 300t  and

1Td mN.  at 400300 t .fig.9.b, at case 1 when 4R ,

04.0J 2.mKg  at 300t  and 4.Td mN.  at 310220 t ;
and  case  2  when 3R , 03.0J 2.mKg  at 300t  and

3.Td mN.  at 400300 t . The PI self tuning controller
doesn't work well with this kind of disturbance.

0 50 100 150 200 250 300 350 400 450 500
-2

0

2
a square wave input

0 50 100 150 200 250 300 350 400 450 500
-2

0

2

ra
d/

se
c

dc motor output

0 50 100 150 200 250 300 350 400 450 500
-5

0

5
x 10

-15 the error between the input and the output

time(sec)

0 50 100 150 200 250 300 350 400 450 500
-50

0

50
parameters evolution

time(sec)

(a)RBFNN

0 50 100 150 200 250 300 350 400 450 500
-2

0

2
a square wave input

0 50 100 150 200 250 300 350 400 450 500
-2

0

2

ra
d/

se
c

dc motor output

0 50 100 150 200 250 300 350 400 450 500
-2

0

2
the error between the input and the output

time(sec)

0 50 100 150 200 250 300 350 400 450 500
-50

0

50
parameters evolution

time(sec)

(b) PI

Fig. 5: Tracking trajectory for self tuning DC motor and the
error signal
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Fig. 6: The effect of variance for the armature resistance at

300t at (a) 10R  and 9.14R  (b) 15R  and 16R
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Fig. 8: The effect of variance for the torque disturbance at
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Fig. 9: The effect of disturbances synchronized on the speed
of self tuning DC motor system.

3.2 The flexible transmission system
The flexible transmission system consists of three
horizontal pulleys connected by two elastic belts. The
schematic diagram and the photo of the system are shown,
respectively, in Fig.10. The first pulley is driven by a dc
motor whose position is controlled by local feedback. Since
the dynamic of this feedback loop is much faster than that
of the mechanical parts, it can be neglected in the analysis
of the system. The objective is to control the position of the
third pulley which may be loaded with small disks. The
system input is the reference for the axis position of the first
pulley. A PC is used to control the system. The system has a
pure time delay equal to two sampling periods and an
unstable zero.

     The discrete-time plant is described by the following
transfer operator:

1

1
1

qA
qBqqH

d

Where 1q  is the backward shift operator, d  is the plant
pure time delay and

nB
nB qbqbqB ...)( 1
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Fig. 10:  Schematic diagram of the flexible transmission

Fig. 11  shows the efficient response of the self tuning
flexible transmission adaptive control for the square wave
excitation (reference) signal, the error signal which the
variance between the reference signal and the output
system also, the model parameters growth at the no load
case.
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Fig. 11: Simulation Results for self-tuning flexible
transmission system for no-load case

     The self-tuning flexible transmission system is started
without load on the third pulley and at the instants 150s
and 350s 50% of the total load is added on the third pulley.
Therefore the system without load becomes full loaded in
two stages. Fig. 12 shows very good performances in
tracking. The control system with the same synthesis
parameters as well as the same reference signal is again
considered. The plant is initially full loaded case and it
passes to unloaded case in two stages (at 50s and 150s). The
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results illustrated in Fig. 13 show the good tracking
performances of the system; likewise Fig. 14 that shows the
transition from full load case to unload case direct (at 300s).
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Fig. 12: Simulation Results for self-tuning flexible

transmission system for change load ( %100%0  in two
stages at 150s, 350s).
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Fig. 13: Simulation Results for self-tuning flexible

transmission system for change load ( %0%100  in two
stages at 50s, 150s).
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Fig. 14: Simulation Results for self-tuning flexible

transmission system for change load ( %0%100  at 300s).
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Fig. 15: Simulation Results for self-tuning flexible

transmission system for ( %100%0 ) case with output
disturbance (e.g.(a) )sin(05.0 t  and )sin(5.0 t (b) )sin(05.0 t )

Then, at the changed load case from unloaded state to full
load state in two stages that previously mentioned, we
suffix the sine wave signal to the position output of the
system at specific time period 300250 t  and

450400 t in fig .15. In summary, we see that the output
of self-tuning regulator (STR) structure mimics the track
accurately at first status but another trajectory misses when
noise enlarged lightly.

4.  CONCLUSIONS
A direct STR type of adaptive control is introduced and
makes use of the RBFNN. Training algorithm is developed
for  the  new  STR.  The  proposed  method  is  a  very  simple
structure that updates itself online. The exact model of the
plant needs not to be known and just the estimates are
enough to drive the RBFNN as the process inverse. In the
proposed technique the inverse of the plant is not obtained
by another filter that might be the unstable inverse of the
non-minimum phase plant, but modeled by RBFNN that
only requires the estimate of the zeroes of the plant. The
restrictions for the non-minimum phase and unstable linear
plant are relaxed, thus outperforming others of its kind.
Simulation results depict satisfactory tracking behavior for
both minimum and non-minimum phase linear plants.

The proposed STR structure is tested by exposed to
different disturbances in used plants. The adaptive self-
tuning regulator introduces a good solution for control the
linear plant even if the model meets a different individual
disturbances or synchronous disturbances.

 The RBFNN is a fast neural network compared with others
type due to using least mean squares principle as training
algorithm. Its structure has 2 neurons in hidden layer. At
last, the proposed algorithm is successfully verified using
simulations for both minimum and non-minimum phase of
linear plants.

Appendix A

The parameter of the DC motor

Emf constant Kb=.015

Friction coefficient= 0.2 sec//. radmN

Moment of inertia J= 0.02 2.mKg

Armature resistance R= 2.0 Ohms

Armature inductance L= 0.5 Henrys

Torque constant Km=.015
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